Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Infect Public Health ; 15(3): 338-342, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1665197

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has become a major public health threat. This study aims to evaluate the effect of virus mutation activities and policy interventions on COVID-19 transmissibility in Hong Kong. METHODS: In this study, we integrated the genetic activities of multiple proteins, and quantified the effect of government interventions and mutation activities against the time-varying effective reproduction number Rt. FINDINGS: We found a significantly positive relationship between Rt and mutation activities and a significantly negative relationship between Rt and government interventions. The results showed that the mutations that contributed most to the increase of Rt were from the spike, nucleocapsid and ORF1b genes. Policy of prohibition on group gathering was estimated to have the largest impact on mitigating virus transmissibility. The model explained 63.2% of the Rt variability with the R2. CONCLUSION: Our study provided a convenient framework to estimate the effect of genetic contribution and government interventions on pathogen transmissibility. We showed that the S, N and ORF1b protein had significant contribution to the increase of transmissibility of SARS-CoV-2 in Hong Kong, while restrictions of public gathering and suspension of face-to-face class are the most effective government interventions strategies.


Subject(s)
COVID-19 , Pandemics , Government , Humans , Mutation , Pandemics/prevention & control , SARS-CoV-2/genetics
2.
PeerJ ; 8: e10350, 2020.
Article in English | MEDLINE | ID: covidwho-914776

ABSTRACT

BACKGROUND: Monitoring the reproduction number (Rt ) of the disease could help determine whether there is sustained transmission in a population, but areas with similar epidemic trends could have different transmission dynamics given the risk from imported cases varied across regions. In this study, we examined the Rt of coronavirus disease 2019 (COVID-19) by taking different dynamics of imported cases into account and compared the transmissibility of COVID-19 at different intervention periods in Hangzhou and Shenzhen. METHODS: We obtained the daily aggregated counts of laboratory-confirmed imported and local cases of COVID-19 infections in Hangzhou and Shenzhen from January 1 to March 13, 2020. Daily Rt and piecewise Rt before and after Wuhan lockdown were estimated, accounting for imported cases. RESULTS: Since the epidemic of COVID-19 in Shenzhen was dominated by imported cases, Rt was around 0.1 to 0.7 before the Wuhan lockdown. After the lockdown of Wuhan and the initialization of measures in response to the outbreak, local transmission was well-controlled as indicated by a low estimated value of piecewise Rt , 0.15 (95% CI [0.09-0.21]). On the contrary, Rt obtained for Hangzhou ranged from 1.2 to 4.9 with a piecewise Rt of 2.55 (95% CI [2.13-2.97]) before the lockdown of Wuhan due to the surge in local cases. Because of the Wuhan lockdown and other outbreak response measures, Rt dropped below unity in mid-February. CONCLUSIONS: Even though Shenzhen had more cases than Hangzhou, local transmission did not sustain probably due to limited transmission from imported cases owing to the reduction in local susceptibles as residents left the city during Chunyun. The lockdown measures and local outbreak responses helped reduce the local transmissibility.

SELECTION OF CITATIONS
SEARCH DETAIL